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1.  INTRODUCTION 

Deep-sea corals and sponges are important benthic 
ecosystem components that provide complex 3-
dimensional structure on the seafloor and are hot -
spots of biodiversity and abundance for marine 
fish and invertebrates (Buhl-Mortensen et al. 2010, 
Watling et al. 2011, Linley et al. 2017). In general, 
deep-sea corals and sponges are long-lived, slow 

to mature, have low reproductive output, and are 
structurally fragile, making them vulnerable to dam-
age from fishing gear (Freese 2001, Koslow et al. 
2001, Clark & Rowden 2009, Heifetz et al. 2009). 
Structured habitats are preferred by many fish spe-
cies (e.g. Sebastes spp.), and deep-sea corals and 
sponges can form structure on otherwise featureless 
seafloor (Brodeur 2001, Love et al. 2006, Rooper et al. 
2018). Vulnerable marine ecosystems (VMEs) are 
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areas where fishing activities are likely to have dele-
terious impacts on the benthic community (FAO 
2009). In 2006, the UN General Assembly resolution 
61/105 adopted language to prevent impacts on 
VMEs by deep-sea fisheries by identifying areas 
where VMEs are known or likely to occur. 

One difficulty with identifying areas where VMEs 
occur is that as a community, deep-sea corals and 
sponges are a large taxonomic grouping with varied 
life histories and habitat preferences (Stone et al. 
2011, Wilborn et al. 2018). Taxonomic revisions are 
common in some taxonomic groups, such as sponges 
and alcyonacean corals (e.g. Cairns 2011, Reiswig 
2020, McFadden et al. 2022). Identification of deep-
sea corals and sponges can also be limited by the 
quality of images or field collections (e.g. McIntyre et 
al. 2016). Even for physically collected samples, 
sponge taxonomy is challenging and often requires 
microscopic examination of spicules to confirm iden-
tification to species. For these reasons, deep-sea 
corals and sponges are often treated at higher taxo-
nomic levels such as order or class, or alternatively, 
indicator taxa are used to represent the distribution 
or presence of VMEs (FAO 2016, Jansen et al. 2018, 
Winship et al. 2020). Indicator taxa can be useful in 
that they can simplify the problem of large and het-
erogeneous groupings and allow monitoring of a 
series of single or easily identified taxa. 

Environmental conditions influence where deep-
sea corals and sponges are found. In the deep-
sea area of Porcupine Bight, northeastern Atlantic 
Ocean, dense aggregations of sponges have been 
observed in areas adjacent to areas of high current 
speeds (Rice et al. 1990, White 2003). In Alaska, USA, 
upright sponges inhabit a variety of substrates, es -
pecially exposed rock with little sedimentation but 
also flat silty seafloors possibly with hard substrate 
beneath (Freese 2001), whereas corals usually in -
habit hard substrates such as boulders and exposed 
bedrock (Cimberg et al. 1981, Krieger 2001) and are 
infrequently found on sandy or silty seafloors. Re -
cruitment and abundance of corals and sponges may 
be influenced by the presence of exposed hard sub-
strate (Gotelli 1988, Leys & Lauzon 1998). While 
other corals (e.g. Primnoidae) are largely found in 
rocky, shallower areas, sea whips typically occupy 
deeper depths and mostly unconsolidated substrates 
in Alaska (Wilborn et al. 2018). 

Zoogeography is the study of the relationships 
among organisms living together and the environ-
mental conditions that structure these relationships. 
Here, we examined the zoogeography of deep-sea 
corals and sponges in Alaska, identified assemblages 

and indicator taxa of these assemblages, and used a 
large set of several hundred observations to do so. 
After first identifying assemblages, we then identi-
fied the environmental factors structuring these 
assemblages and predicted their spatial distribu-
tions. This ‘assemblage first−predict later’ approach 
to identify and then model the distribution of biolog-
ical communities has been frequently used in terres-
trial ecosystems (Ferrier & Guisan 2006) and also 
applied to marine ecosystems (e.g. Moritz et al. 2013, 
Serrano et al. 2017, de la Torriente et al. 2019). Our 
study objectives were to (1) identify the major Alaska 
coral and sponge assemblages, (2) identify the envi-
ronmental variables structuring these assemblages, 
(3) predict the spatial distributions of these assem-
blages and their indicator taxa, and (4) identify indi-
cator taxa for VMEs and their conservation. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

The study area includes the eastern Bering Sea, 
Aleutian Islands region, and Gulf of Alaska (Fig. 1). 
The data set is extensive (n = 853 transect locations) 
and draws from nearly a decade (2010−2017) of field-
work. Sampling designs included stratified random 
sampling of a region (e.g. eastern Bering Sea and 
Aleutian Islands; Rooper et al. 2014, 2016), haphaz-
ard random sampling of a region (e.g. sampling pig-
gybacked on hydroacoustic surveys of the Gulf of 
Alaska), and random sampling of a few small areas 
(e.g. Habitat Area of Particular Concern sampling in 
the western Gulf of Alaska). Images were collected 
with a calibrated stereo drop-camera (Williams et al. 
2010) deployed from a vessel that drifted or drove 
above the seafloor, usually for 15 min (targeted on-
bottom time), where the distance traveled along the 
seafloor (mean ± SD: 380 ± 252 m) and the swath 
width (typically 2−5 m) were measured, and the cam-
era was held 1−2 m from the seafloor (for more detail, 
see for example Rooper et al. 2016). Deployments for 
the Habitat Area of Particular  Concern sampling 
were shorter, typically 5 min, and as short as 2 min 
over sandy seafloor. The seafloor area observed at a 
transect location averaged 1212 ± 905 m2, and was as 
small as 14 m2 during a 2 min deployment in a sandy, 
low-current area and as high as 7837 m2 for a 15 min 
deployment in a high-current area. Each transect 
location (site) was sampled by a single camera 
deployment. Images were collected at 1 s intervals 
along the transect. 
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2.2.  Deep-sea coral and sponge data 

Post-cruise image analysis was conducted to deter-
mine substrate types and deep-sea coral and sponge 
density at each site. All structure-forming inverte-
brates (corals, sponges, sea whips, and sea pens) 
were identified to the lowest possible taxonomic 
level and counted for each transect. The lowest iden-
tifiable taxonomic level was typically genus or spe-
cies for corals and sea whips and order for sponges 
(Stone et al. 2011, Stone 2014). Although sea whips 
Balticina sp. and sea pens Ptilosarcus gurneyi are in 
the subclass containing corals (Octocorallia), they 
were considered separately from other corals in the 
suborders Holaxonia (family Plexauridae) and Cal-
caxonia (families Primnoidae and Isididae) because 
sea whips and sea pens prefer sandy, unconsolidated 
substrates whereas other corals prefer rocky sub-
strate (cobble, boulder, or exposed bedrock). 

The deep-sea coral and sponge data were aggre-
gated to the finest consistently identified taxa, which 
comprised 12 groups (see Table 2). For example, the 
coral family Primnoidae could sometimes be identi-
fied to species (e.g. Plumarella aleutiana, 0.1% of 
cases) or genus (e.g. Plumarella sp., 27% of cases) in 
the post-cruise image analysis but in other cases 
could only be identified to family (Primnoidae, 64% 
of cases). Rather than have 2 overlapping taxa, we 
aggregated these observations into Primnoidae, 
which is the finest consistently identified taxa for 
these observations. In practice, only 3 of the 12 

groups (all coral families) — Primnoidae, Plexauri dae, 
and Acanthogorgiidae — were treated this way. 
 Observations of Fanellia sp., Plumarella aleutiana, 
Plumarella sp., Primnoa pacifica, Primnoidae, and 
Thouarella sp. were grouped into Primnoidae, obser-
vations of Alaskagorgia aleutiana, Muriceides sp., 
Plexauridae, and Swiftia sp. were grouped into Plex-
auridae, and observations of Acanthogorgia sp., 
Acanthogorgiidae, and Calcigorgia sp. were grouped 
into Acanthogorgiidae. The remaining 9 taxa were 
consistently identified at the same resolution (e.g. no 
subgroupings of Demospongiae were identified). 
Four coarse identifications — Porifera (e.g. includes 
the sponge taxa Hexactinellida, Demospongiae, and 
Calcarea), coral, Octocorallia (includes several fami-
lies but most likely were Primnoidae and Plexauri-
dae), and Pennatuloidea (includes Balticina sp. and 
P. gurneyi) — overlap many of the finest-level con -
sistently identified taxa but infrequently occurred 
(frequency of occurrence [FO] of 0.012, 0.002, 0.020, 
and 0.008, respectively). To avoid overlap, we ex-
cluded these 4 taxa from the analysis. As a result, we 
analyzed 12 taxa that formed mutually exclusive 
groups (see Table 2). 

2.3.  Environmental data 

In total, 9 environmental variables (depth, slope, 
proportion of rock and cobble, bottom current, bot-
tom temperature, maximum tidal current, ocean 
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Fig. 1. Study area in the eastern Bering Sea, Aleutian Islands region, and the Gulf of Alaska. Red circles: transect locations  
(n = 853). Created using the R package ggOceanMaps (Vihtakari 2022) 
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color, aspect, and topographic position index [TPI]) 
were tested for their influence on structuring deep-
sea coral and sponge assemblages. These variables 
were chosen based on their importance in determin-
ing coral and sponge distributions from previous 
analyses of Alaska deep-sea coral and sponge data 
(Rooper et al. 2014, 2016, Sigler et al. 2015). 

Depth was collected during each camera deploy-
ment from either a SeaBird SBE-39 micro bathyther-
mograph attached to the stereo-camera system or a 
housing-integrated calibrated pressure transducer. 
Start and end positions for the vessel during the on-
bottom portion of each transect were collected using 
the vessel-mounted GPS receiver. The midpoint of 
the start and end positions was used as the location 
variable for longitude and latitude in the analysis. 
The longitude and latitude data for each transect 
(and all other geographical data including the raster 
layers described below) were projected into an 
Alaska Albers Equal Area Conic projection (center 
latitude: 50° N; center longitude: 154° W). 

For each stereo-camera transect, the bottom sub-
strate type was classified by a commonly used 
seafloor substratum classification system (Stein et al. 
1992, Yoklavich et al. 2000), which consists of a 2-
 letter code denoting a primary substratum with 
>50% coverage of the seafloor and a secondary sub-
stratum with 20−49% coverage of the seafloor. Nine 
identified substratum types were identified using the 
Wentworth Scale (Wentworth 1922): mud, sand, 
gravel, pebble (diameter ≤ 6.5 cm), mixed coarse 
material, cobble (6.5 cm < diameter < 25.5 cm), boul-
der (diameter > 25.5 cm), exposed low-relief bed -
rock, and exposed high-relief bedrock. By this classi-
fication, a section of seafloor covered primarily in 
cobble but with boulders over more than 20% of the 
surface would receive the substratum code cobble− 
boulder. The substratum code was changed only if a 
substratum encompassed more than 10 sequential 
images. The substrate category for each image then 
was grouped into one of 2 major categories: uncon-
solidated (mud, sand, pebble, gravel, or mixed coarse 
substrates) or rock and cobble (cobble, boulder, high 
and low-relief bedrock) classifications. The propor-
tion of rock and cobble for a transect was computed 
from the number of images classified as rock and 
cobble (primary or secondary classification) for the 
transect divided by the total number of images for 
the transect. This proportion then was used as an 
environmental variable in the analysis (proportion of 
rock and cobble). Unfortunately, no Alaska-wide 
spatial prediction (raster layer) is available for the 
proportion of rock and cobble, so while we used this 

variable to identify the environmental variables 
structuring assemblages (our second objective), we 
excluded it from predicting spatial distributions of 
these assemblages and their indicator taxa (our third 
objective). 

The remaining environmental variables were de -
rived from spatial predictions (raster layers) devel-
oped for Alaska and used in previous deep-sea coral 
and sponge modeling studies (Rooper et al. 2014, 
2017, Sigler et al. 2015). For each environmental 
variable, the raster-layer value at the midpoint of 
each camera deployment was used in the analysis. A 
100 × 100 m bathymetry raster was used (see Zim-
mermann et al. 2013, Zimmermann & Benson 2013, 
Zimmermann & Prescott 2015 for details of the 
bathymetry layers used). This raster was used for 
prediction (since it had complete coverage of the 
study area) but not for parameterizing the models. 
Two environmental variables were derived from the 
bathymetry raster. Slope for each raster grid cell was 
computed as the maximum difference in angle 
(range: 0−90°) between the depth at a cell and its sur-
rounding cells. TPI was calculated from the bathym-
etry layer as the difference between the depth of a 
cell and the depth of its surrounding neighbors. This 
variable was meant to represent the degree to which 
cells were on peaks or valleys compared to surround-
ing depths. Slope and TPI were computed using the 
‘raster’ package in R software (Hijmans et al. 2019). 

Water movement is important to deep-sea corals 
and sponges for nutrient delivery, reproduction, and 
other processes. Water movement in Alaska can be 
dominated by more dynamic tidal currents as in the 
Aleutian Islands (Ladd et al. 2005) or underlying and 
persistent larger scale oceanographic currents as on 
the Bering Sea slope (Stabeno et al. 1999). Three 
measures of water movement and their potential 
interaction with the seafloor were used as environ-
mental variables. The first variable was maximum 
tidal speed (cm s−1). Tidal speeds were estimated for 
368 consecutive days (1 January 2009 to 3 January 
2010) using a tidal inversion program parameterized 
for Alaska on a 1 × 1 km grid (Egbert & Erofeeva 
2002). This tidal prediction model was used to pro-
duce a time series of one lunar year of tidal currents 
for spring and neap cycles on a regular grid for each 
region; the maximum of each time series was com-
puted and the values interpolated to a 100 × 100 m 
grid using ordinary kriging (Laman et al. 2018). 

The second water movement variable was the pre-
dicted bottom water layer current speed (m s−1) from 
Regional Ocean Modeling System (ROMS) model 
runs from 1970−2004 (Danielson et al. 2011, Her-
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mann et al. 2013), with 10 × 10 km grid cells. This 3-
dimensional model has 60 depth tiers for each grid 
cell. A point at 60 m water depth would have 60 
depth bins at 1 m intervals, while a point at 120 m 
depth would have 60 depth bins at 2 m depth inter-
vals, etc. The current speed for the deepest depth bin 
at each point (closest to the seafloor) was used in this 
analysis. These regularly spaced data were interpo-
lated to a 100 × 100 m cell size raster using inverse 
distance weighting. Two different methods (inverse 
distance weighting and ordinary kriging) were used 
to interpolate the environmental data because the 
data were originally derived from different sources 
with either regular or irregular grid sizes. 

The third water movement variable was aspect, 
computed from the angle of the seafloor relative to 
the mean current direction. The angle the seafloor 
faces was computed from the bathymetry layer, in 
degrees relative to north (0°), using the ‘raster’ pack-
age in R software (Hijmans et al. 2019). The current 
direction used was output from the ROMS model 
described above. Aspect is the absolute value of the 
difference between the current direction and the 
angle the seafloor faces at each 100 × 100 m grid cell. 
This value ranged from 0° (where the current was 
flowing in the same direction the seafloor was facing) 
to 180° (where the mean current was flowing oppo-
site the direction the seafloor was facing). 

The average summer temperature (°C) at each site 
was estimated from data collected during Alaska bot-
tom trawl surveys from 1991−2018 in the eastern 
Bering Sea, Aleutian Islands region, and Gulf of 
Alaska. Bottom temperatures are collected during 
each bottom trawl tow using the SBE-39 attached to 
the headrope of the net. Mean bottom temperatures 
for each haul were interpolated to the 100 × 100 m 
grid for the regions. These data were interpolated 
using ordinary kriging (Venables & Ripley 2002). 
This resulted in a raster layer of average summer bot-
tom temperature from 1991−2018. 

A measure of ocean primary productivity (mg C 
m−2 d−1) was computed based on moderate resolution 
imaging spectroradiometer (MODIS) ocean color 
data for 5 spring−summer months (May−September) 
that encompass the spring and summer phytoplank-
ton blooms over 10 yr (2002−2011) for Alaska 
(Behrenfeld & Falkowski 1997). Surface primary pro-
ductivity was included in the analyses to reflect the 
spatial differences in ocean productivity throughout 
Alaska. We assumed that the productivity available 
to the benthos would be related to the productivity in 
the overlying water column. These data were down-
loaded from Oregon State University’s Ocean Pro-

ductivity website (http://sites.science.oregonstate.
edu/ocean.productivity/index.php). The native reso-
lution was ⅙° latitude and longitude. These data 
were averaged by cell and by month and then aver-
aged again by cell and by year (to account for differ-
ences in the number of samples within each cell). 
The averages were then interpolated to a 100 × 
100 m raster grid using inverse distance weighting. 

2.4.  Analytical methods 

2.4.1.  Identify deep-sea coral and  
sponge assemblages 

Cluster analysis was used to partition the deep-sea 
coral and sponge data and identify the major deep-
sea coral and sponge assemblages in Alaska (Bor-
card et al. 2018). The cluster analysis was conducted 
using the ‘stats’ package in R. We grouped sites 
based on similarity of taxa. We considered excluding 
scarce taxa from the cluster analysis but did not 
because only one of the 12 taxa analyzed had an 
FO < 0.01 (i.e. only one group was scarce: Antipatha -
ria, FO = 0.004) (see Table 2). The data were chord 
transformed (site sum of squares equals 1), which 
expresses the data as relative abundances per site 
and removes total abundance per site (the response 
of the taxon to the total productivity of the sites) (Bor-
card et al. 2018). Euclidean distances were computed 
between sites using the relative abundance data. 

We applied 2 clustering methods: hierarchical clus-
ter analysis with Ward’s minimum variance method 
and a non-hierarchical method, k-means, to optimize 
Ward’s classification (Borcard et al. 2018) (Table 1). 
In the k-means optimization of Ward’s classification, 
the mean taxa values for each of the clusters from 
Ward’s classification were used as a starting point 
for the k-means optimization, and the sum of the 
squared Euclidean distances within the groups was 
minimized. Following completion of the cluster 
analysis, relative abundances for the 12 taxa were 
plotted by cluster to depict taxa associations and 
identify indicator taxa for each cluster. 

In the hierarchical cluster analysis, we determined 
the number of clusters based on silhouette width (a 
measure of how well a site is clustered) and species 
fidelity analysis (a measure of how well a cluster is 
characterized by a set of indicator species) (Borcard 
et al. 2018). The silhouette width is based on the 
average dissimilarity between a site and all sites of 
the cluster to which it belongs, compared to the same 
measure computed for the next closest cluster; sil-
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houette widths range from −1 to 1 (Borcard et al. 
2018). The optimal number of clusters is the number 
that maximizes the average silhouette width. Species 
fidelity analysis is based on the concepts of speci-
ficity (highest when the species is present in the tar-
get group but not elsewhere) and fidelity (highest 
when the species is present in all sites of the target 
group). We applied the Dufrêne & Legendre (1997) 
IndVal index available in the R package ‘labdsv’, 
which is a function of specificity and fidelity. The 
optimal number of clusters is the number that maxi-
mizes the IndVal index. 

2.4.2.  Identify the environmental variables  
structuring these assemblages 

We used canonical correspondence analysis (CCA) 
(ter Braak 1986) to identify the primary environmen-
tal variables structuring deep-sea coral and sponge 
 assemblages in Alaska (Table 1). Our CCA com-
pared the deep-sea coral and sponge data (12 taxa; 
see Table 2) to the 9 environmental variables. In this 
sense, the deep-sea coral and sponge data set is the 
response matrix and the environmental data set is 
the explanatory matrix. The CCA was conducted 
using the ‘vegan’ package in R. The use of CCA 
should be limited to situations where rare species are 
well sampled and are seen as potential indicators of 
particular characteristics of an ecosystem (Borcard 
et al. 2018). In our data set, only one taxon was rare 
(FO < 0.01; see Table 2) and taxa were well sampled 
with the data set consisting of over 850 transect loca-
tions. The taxa data are the raw, untransformed 
abundances in CCA. CCA results were tested by per-
mutation, which, combined with a variable selection 
process (the ‘ordistep’ function in the ‘vegan’ pack-
age), was used to find the most parsimonious rela-

tionships between the environmental and deep-sea 
coral and sponge data sets. We displayed the rela-
tionships in a biplot. In the  biplot, arrows for related 
environmental variables point in the same general 
direction, representing a gradient from low values 
(arrow base) to high values (arrow point). Taxa are 
located in the biplot along the environmental gradi-
ent at their mean position weighted by abundance, 
so taxa occurring near the point of a variable arrow 
are positively influenced (more abundant) by that 
environmental variable. 

2.4.3.  Predict the spatial distributions  
of these assemblages 

We predicted the spatial distributions of the assem-
blages (either the identified clusters or the indicator 
taxon that represents each identified cluster) using 2 
methods: random forest models and generalized 
additive models (GAMs). The random forest model is 
a multivariate method and was used to predict the 
presence−absence of each assemblage simultane-
ously (i.e. one prediction map for all identified clus-
ters, with each grid location assigned to one and only 
one of the identified clusters). GAMs are a univariate 
method and were used to predict the presence prob-
ability of the indicator taxa for each assemblage indi-
vidually (i.e. 6 prediction maps with one map for 
each indicator taxa). 

A random forest model is a classification tree-
based method (Breiman 2001, Cutler et al. 2007). 
Random forest models bootstrap the data and fit 
many individual trees to the bootstrapped data. A 
random selection of explanatory variables to con-
sider at each split (branch) of the tree is chosen and 
then the predictions of the multiple resulting trees 
are combined into a single prediction by ensembling. 
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Purpose                                         Method                                             Environmental data   Species data 
 
Identify assemblages                   Hierarchical cluster analysis          None                           Relative abundance of all (12) taxa 
                                                      (Borcard et al. 2018) 

                                                      k-means optimization of cluster     None                           Relative abundance of all (12) taxa 
                                                      analysis (Borcard et al. 2018) 

Identify environmental varia-     Canonical correspondence             Values                         Abundance (untransformed)  
bles structuring assemblages      analysis (ter Braak 1986)                 (untransformed)         of all (12) taxa 

Predict spatial distributions        Random forest modeling                 Values                        Presence−absence of clusters 
of assemblages                             (Cutler et al. 2007)                           (untransformed) 

                                                      Generalized additive modeling      Values                        Presence−absence of indicator taxa 
                                                      (Hastie & Tibshirani 1990)               (untransformed)

Table 1. Purpose and method as well as the form of the environmental and species data used in each analysis
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Our random forest model was a single multinomial 
random forest model that related the presence−
absence values for the identified clusters to the envi-
ronmental variables. The analysis included the iden-
tified clusters (e.g. Demospongiae) plus a category 
for sites with no deep-sea coral or sponge present. 
We created a single multi-class confusion matrix for 
the clusters. The random forest modeling was con-
ducted using the ‘randomForest’ package in R. 
Default values for the number of variables randomly 
sampled as candidates at each split (n = 3) were used, 
and the number of trees computed was 5000. In ran-
dom forest analysis of presence−absence data, the 
default probability threshold for presence in a group 
is 1/k, where k is the number of groups (clusters) 
(James et al. 2013). 

A GAM (Hastie & Tibshirani 1990) is a multiple 
regression method in which part of the linear predic-
tor is specified in terms of smooth functions of predic-
tor variables (Wood 2006), which allows complex and 
non-linear relationships to be estimated. Our GAM 
compared the presence−absence of the indicator 
taxa identified in the cluster analysis (6 taxa; see 
Table 2) to the 9 environmental variables. The ‘mgcv’ 
package in R (Wood 2006) was used to predict the 
dependent variables with the suite of untransformed 
environmental variables included so that the full 
model was as follows: 

y = s(depth) + s(temperature) + s(slope) + s(TPI)  
+ s(maximum tidal current) + s(mean current 
speed) + s(aspect) + s(ocean color) + s(proportion 
of rock and cobble) + offset[log(area)] + ε 

where y is the dependent variable presence or 
absence for each indicator taxa and s indicates a thin 
plate regression spline smoothing function (Wood 
2006). In each case, the basis degrees of freedom 
used in the smoothing function was limited to ≤4. 
The seafloor area observed at a transect location was 
treated as a model ‘offset’; that is, as a column of the 
model matrix with the associated parameter fixed at 
1 to account for differences in area among transect 
locations (Wood 2006). A binomial distribution was 
used for the fitting of these presence−absence 
 models. 

Automatic term selection using ‘shrinkage’ (Marra 
& Wood 2011) was used to reduce the number of vari-
ables in each model, implemented as the ‘select’ 
option of the ‘mgcv’ function ‘gam’ (Wood 2022). If 
‘select’ is TRUE, then an extra penalty is added to 
each term so that it can be penalized to zero. This 
means that the smoothing parameter estimation that 
is part of fitting can completely remove terms from 

the model. If the corresponding smoothing parame-
ter is estimated as zero, then the extra penalty has no 
effect. The outcome of automatic term selection was 
checked by specifying the reduced model in R and 
then fitting the reduced model to the data to verify 
that the results were similar for automatic term selec-
tion and the reduced models and that the unbiased 
risk estimator (UBRE) value was minimized. We also 
tested backward selection by sequentially removing 
the variable with the highest p-value in each step but 
found that this method did not reliably reach the 
same reduced set of variables as found for the shrink-
age method or the lowest UBRE score. For each data 
set, the model with the lowest UBRE score was 
deemed the best-fitting model and was used for 
 spatial prediction. 

For both random forest models and GAMs, spatial 
predictions of clusters (random forest) and indicator 
taxa (GAMs) were made. The raster layers of each of 
the environmental variables were used in the spatial 
predictions, except for the proportion of rock and 
cobble, which has no raster layer for Alaska. For spa-
tial predictions, we used raster layers at a coarser 1 × 
1 km grid to speed prediction computation and 
 plotting. 

2.4.4.  Evaluate predictive models 

Model validation and testing was performed by 5-
fold cross-validation with spatial partitioning (Valavi 
et al. 2019) for both random forest models and GAMs. 
The data were partitioned into k = 5 parts (folds), 
using one part for testing and the remaining (k − 1 
folds) for model fitting. In 5-fold cross-validation, the 
process is iterated until all 5 folds have been used for 
testing. The spatial partitions separate units of geo-
graphical area (Valavi et al. 2019). In each iteration, 
model parameters were estimated with the training 
data (4 folds), and the model was tested against the 
held-back data (1 fold). A misclassification table 
(‘confusion matrix’) was produced, displaying the 
number of predictions that matched the correspon-
ding observations as well as those that did not (i.e. 
how many observations of presence were correctly 
predicted as presence and how many were incor-
rectly predicted as absence). Two misclassification 
tables were produced; one using the test data set and 
the other using the training data set (both use the 
best-fitting model based on the training data set). 

For random forest modeling, the misclassification 
table is a measure of the ability of the random forest 
model to correctly predict the observed classification. 
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The classification error rate is the proportion that are 
incorrectly classified. Another evaluation measure 
can be obtained from the bootstrapped subsets of the 
observations and the out-of-bag (OOB) subset; one 
can predict the response for the i th observation using 
each of the trees in which that observation was OOB, 
from which the overall OOB classification error can 
be computed (James et al. 2013). We report the aver-
age value of the 5 iterations for each test statistic (e.g. 
average OOB classification error). 

For GAMs, the predictions were compared to the 
observations by 3 diagnostic methods. The first diag-
nostic method, the area under the receiver operating 
characteristic curve (AUC), calculates the probability 
that a randomly chosen presence observation would 
have a higher probability of presence than a ran-
domly chosen absence observation, using rank data. 
AUC > 0.5 is estimated to be better than chance, 
AUC > 0.7 is estimated to be 
acceptable, and values >0.8 and 
0.9 are excellent and outstanding, 
respectively (Hosmer & Lemeshow 
2005). The threshold probability 
that balanced the rate of false posi-
tive and false negative predictions 
was used to produce a matrix of 
presence or absence  predictions. 
From this matrix, we calculated the 
second diagnostic method, the true 
skill statistic (TSS; Allouche et al. 
2006). Sensitivity is the probability 
that the model will correctly clas-
sify a presence. Specificity is the 
probability that the model will 
 correctly classify an absence. TSS 
is calculated from sensitivity and 
specificity and ranges from −1 to 
+1, where +1 indicates perfect 
agreement and values of zero or 
less indicate a performance no 
 better than random (Allouche et 
al. 2006). The third diagnostic 
method, Tjur’s coefficient of dis-
crimination (D), is interpreted as 
the difference between the aver-
ages of fitted values for presence 
and absence and has been recom-
mended for use as a standard 
measure of explanatory power for 
presence−absence models (Tjur 
2009). A value of D = 0.2 would 
mean that presences were pre-
dicted to have on average a 0.2 

higher probability than absences. D is not a true R2 
but is a pseudo-R2 that is related to the R2 (Tjur 2009). 
We report the average value of the 5 iterations for 
each test statistic (e.g. average AUC for the test data 
set for Demospongiae). 

3.  RESULTS 

A total of 853 sites were sampled with stereo drop-
cameras in the eastern Bering Sea, Aleutian Islands 
region, and Gulf of Alaska (Fig. 1). Demospongiae 
was the most common taxa (FO = 0.54, i.e. ob -
served at 54% of the sites) and where observed, the 
most abundant (average density = 1615 ind. ha−1) 
(Table 2). Other common taxa (FO > 0.1) were Hexa-
ctinellida, Balticina sp., Primnoidae, Plexauridae, 
and Stylasteridae. 
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Finest consistently   Proportion  Average density   Constituent taxa  
identified taxa           non-zero        for non-zero       and their percentages 
                                                         observations        
 
Demospongiaea            0.540               1614.6            Demospongiae 100% 
Hexactinellidaa             0.279                 72.4              Hexactinellida 100% 
Balticina sp.a                 0.271                384.2             Balticina sp. 100% 
Primnoidaea                  0.250                982.8             Primnoidae 64% 
                                                                                     Arthrogorgia sp. 3% 
                                                                                     Fanellia sp. 5% 
                                                                                     Plumarella aleutiana 0.1% 
                                                                                     Plumarella sp. 27% 
                                                                                     Primnoa pacifica 0.01% 
                                                                                     Thouarella sp. 1% 
Plexauridae                   0.184                163.9             Plexauridae 67% 
                                                                                     Alaskagorgia aleutiana 7% 
                                                                                     Muriceides sp. 22% 
                                                                                     Swiftia sp. 4% 
Stylasteridaea                0.184                787.3             Stylasteridae 100% 
Ptilosarcus gurneyia     0.098                235.8             Ptilosarcus gurneyi 100% 
Acanthogorgiidae        0.082                 63.4              Acanthogorgiidae 81% 
                                                                                     Acanthogorgia sp. 0.04% 
                                                                                     Calcigorgia sp. 19% 
Paragorgiidae               0.047                  7.4               Paragorgia sp. 100% 
Isididae                          0.023                  8.6               Isididae 100% 
Calcarea                        0.019                  0.7               Calcarea 100% 
Antipatharia                  0.004                  0.1               Antipatharia 100% 
 
aIndicator taxa from the cluster analysis

Table 2. Observations of corals, sponges, and sea whips and sea pens in underwa-
ter camera surveys of the eastern Bering Sea, Aleutian Islands region, and Gulf of 
Alaska. Taxa were classified into 12 mutually exclusive groups (the finest consis-
tently identified taxa). Proportion non-zero is the proportion of observations (n = 
853) with the taxa present (i.e. density greater than zero). The number of observa-
tions with at least 1 taxon present was 616. Average density was computed from 
these observations and is expressed as number per hectare (i.e. a 100 × 100 m 
square). The constituents of the finest consistently identified taxa are shown; 
these constituents are the taxa identifications from the post-cruise image analysis.  

Percentages are based on density
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3.1.  Assemblages 

We identified 6 clusters in the deep-sea coral and 
sponge data. Average silhouette width, a measure of 
how well a site is clustered, was 0.69 (range: 0.47−
0.73) in the final model (k-means optimization of 
Ward’s clustering) and was maximized for 6 clusters. 
The indicator value index, a measure of how well a 

cluster is characterized by a set of indicator taxa, was 
maximized for 2 clusters. We chose 6 rather than 2 
clusters because for 6 clusters, each cluster had an 
obvious indicator taxon: Balticina sp., Demospon-
giae, Hexactinellida, Primnoidae, Ptilosarcus gur-
neyi, or Stylasteridae, and we used these taxa names 
to label the clusters (Fig. 2). These taxa were good 
indicators because their relative abundance was con-
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Fig. 2. Relative abundance of the 12 taxa by cluster membership. Each plot shows a cluster with the horizontal axis represent-
ing relative abundance (0−1) and the vertical axis representing taxa. Each of the 6 clusters had an obvious indicator species: 
Balticina sp., Demospongiae, Hexactinellida, Ptilosarcus gurneyi, Primnoidae, and Stylasteridae, and we used these taxa 
names to label the clusters. Boxplots extend from 1st to 3rd quartile; median is the heavy line dividing the box; upper whiskers 
extend from 3rd quartile to largest value no further than 1.5 × IQR from the 3rd quartile (where IQR is the inter-quartile range, 
or distance between 1st and 3rd quartiles). Lower whiskers extend from 1st quartile to smallest value at most 1.5 × IQR from  

the 1st quartile. Dots show outliers and are plotted individually
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sistently high within their respective cluster (i.e. the 
median value was at or near 1.0 on a scale of 0−1 for 
all clusters). These 6 indicator taxa also were among 
the top 7 most frequently occurring taxa (Table 2). 
Although clusters were well defined by their respec-
tive indicator taxa, other taxa co-occurred within an 
identified cluster. For example, within the Prim-
noidae cluster, 2 other taxa were common: Demo-
spongiae and Plexauridae (Fig. 2). However, the 
median relative abundance of the co-occurring taxa 
never exceeded 0.2, much lower than the median rel-
ative abundance of the indicator taxa of about 1.0. 

3.2.  Environmental relationships  
structuring assemblages 

The most parsimonious relationship between the 
environmental and deep-sea coral and sponge (12 
taxa; Table 2) data sets included all 9 environmental 
variables (p < 0.05), based on CCA (Fig. 3). The 
included environmental variables accounted for 
31.0% of the variability in the deep-sea coral and 

sponge data (adjusted R2). The 6 indicator taxa iden-
tified in the cluster analysis (Demospongiae, Prim-
noidae, etc.) also were distinguished in the CCA (i.e. 
were spatially separated in the biplot; Fig. 3). The 2 
closest taxa spatially were Demospongiae and Prim-
noidae, which aligned along greater maximum tidal 
current, bottom current, proportion of rock and cob-
ble, and bottom temperature. Balticina sp. was posi-
tively influenced in the opposite direction and was 
aligned along lower maximum tidal current, bottom 
current, proportion of rock and cobble, and bottom 
temperature as well as greater depth. Hexactinellida 
and Stylasteridae aligned differently, toward greater 
aspect and ocean color. The farthest taxon spatially 
was Ptilosarcus gurneyi, which aligned along greater 
TPI and lower aspect. 

The proportion of rock and cobble was an impor-
tant environmental variable for differentiating clus-
ters (Fig. 4) and related taxa had similar preferences. 
The coral (Primnoidae and Stylasteridae) clusters 
typically occurred in the areas with the highest pro-
portion of rock and cobble, the sea whip P. gurneyi 
and the sea pen Balticina sp. clusters occurred in 
areas of unconsolidated sediments (proportion of 
rock and cobble = 0), and the sponge (Hexactinellida 
and Demospongiae) clusters occurred in low to inter-
mediate proportions of rock and cobble. For these 
related taxa, pairwise taxa comparisons of the pro-
portion of rock and cobble were not significantly dif-
ferent (ANOVA: Stylasteridae and Primnoidae, p > 
0.99; P. gurneyi and Balticina sp., p = 0.62; Demo-
spongiae and Hexactinellida, p = 0.06). For less 
related taxa (e.g. Primnoidae and Demospongiae), all 
pairwise comparisons were significantly different 
(ANOVA, p < 0.001) except for one pair (P. gurneyi 
and Hexactinellida, p = 0.86), indicating that Hex -
acti nellida frequently occur at sites with a low pro-
portion of rock and cobble (Fig. 4). 

The Primnoidae and P. gurneyi clusters were typi-
cally found within a narrow shallow depth range 
(ANOVA, p = 0.97). Stylasteridae, likewise, were 
found at a shallow but wider depth range, similar to 
Primnoidae (p = 0.77) and P. gurneyi (p = 0.49). The 
remaining pairwise taxa comparisons were statisti-
cally significant (p < 0.05) except for Hexactinellida 
and Balticina sp., both found over a deep and wide 
depth range (p = 0.97), and Stylasteridae and Demo-
spongiae, both found at intermediate depths (p = 
0.61). Primnoidae were found at the highest tidal cur-
rents, followed by P. gurneyi (ANOVA, p = 0.10); 
Primnoidae was significantly different from all other 
pairwise comparisons (p < 0.05) but P. gurneyi was 
not (p > 0.16). 
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Fig. 3. Alignment of the environmental data and relation-
ships with the taxa (12 taxa; Table 2) data, based on canoni-
cal correspondence analysis (CCA). The major CCA axes in 
the biplot are the first principal component (CCA1) and the 
second principal component (CCA2). In the biplot, arrows 
for related environmental variables point in the same gen-
eral direction and a taxon found along an environmental 
variable arrow is positively influenced (more abundant) by 
that environmental variable. The environmental variables 
are aspect (angle), depth (m), bottom current (Bcurrent, m 
s−1), average summer bottom temperature (Btemp, °C), aver-
age spring−summer ocean color (Color, mg C m−2 d−1), slope 
(angle), maximum tidal current (Tmax, cm s−1), proportion of 
rock and cobble (RockCobble), and topographic position  

index (TPI, m)



Sigler et al.: Factors affecting Alaskan deep-sea corals and sponges

3.3.  Predict the spatial distributions  
of these assemblages 

In random forest analysis of presence−absence 
data, we found that the default threshold of 1/k, 
where k is the number of groups (clusters), dispro-

portionately misidentified the Primnoidae cluster as 
the Demospongiae cluster, so we halved the thresh-
old for the Primnoidae cluster to balance the mis -
identification rate for the Primnoidae cluster as the 
Demospongiae cluster and vice versa at about 25%. 
Class error rates for the training sets averaged about 
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See Fig. 2 for explanation of boxplot parameters
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30−50% for all clusters except for the Hexactinellida 
cluster and the P. gurneyi cluster, which were 86 and 
68%, respectively (Table 3). For the testing sets, 
average class error rates increased compared to the 
average values for the training sets, implying some 
model overfitting. Whether or not the proportion of 
rock and cobble was included in the analysis had 
 little effect on model performance; the OOB classi -
fication error was 45% for the full model and 46% 
for the reduced model excluding the proportion of 
rock and cobble. This detail on model performance 
matters for predicting cluster locations (see next 
paragraph) because raster layers exist for all of the 
environmental variables except the proportion of 
rock and cobble. 

In the random forest model, commonly predicted 
clusters were Demospongiae, the coral taxa Prim-
noidae, and the sea whip taxa Balticina sp. (Fig. 5). 
Primnoidae, which prefer rock and cobble, primarily 
occurred in the Aleutian Islands region and the west-
ern Gulf of Alaska shelf. Demospongiae were more 
widespread and mostly concentrated in the Aleutian 
Islands region and the northwest shelf of the eastern 
Bering Sea and also scattered along the shelf break of 
the Gulf of Alaska. Balticina sp., which prefers uncon-
solidated sediment, were widely scattered and mainly 
concentrated on the outer shelf of the eastern Bering 

Sea as well as along the shelf break of the Gulf of 
Alaska. 

In the GAMs, the measures of model predictive 
performance imply that 5 of the 6 estimated relation-
ships are well supported, with Balticina sp. being the 
only exception. The values for the training AUC 
(average of the 5-fold cross-validation) imply that 5 
of the 6 estimated relationships are excellent (>0.8) 
and even the poorest estimated relationship is 
acceptable (>0.7, Balticina sp.) (Table 3). Likewise, 
the test AUC values imply that 4 of the 6 estimated 
relationships are excellent, one is acceptable (Hexa-
ctinellida) and even the poorest estimated relation-
ship is better than average (>0.5, Balticina sp.) 
(Table 3). The 2 other measures of model perform-
ance (TSS and D) imply well-estimated relationships 
for 5 of 6 indicator taxa, with the exception again 
being Balticina sp. The training TSS values ranged 
from about 0.5−0.8 except for Balticina sp. (~0.3) and 
the test TSS values ranged from about 0.3−0.6, again 
except for Balticina sp. (0.06). The training D values 
ranged from about 0.3−0.6 except for Balticina sp. 
(0.11) and the test D values ranged from about 
0.2−0.4 except for Balticina sp. (0.05). 

In the GAMs, the most parsimonious relationships 
between the environmental and indicator taxa data 
sets included 5 or more of the 9 environmental 
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Diagnostic                               Balticina sp.   Demospongiae   Hexactinellida   Primnoidae   Ptilosarcus gurneyi    Stylasteridae 
 
Random forest 
Classification error train             0.52                   0.46                     0.86                  0.32                     0.68                       0.52 
Classification error test               0.72                   0.50                     0.95                  0.81                     0.80                       0.79 

GAM with RockCobble 
AIC                                              766.1                 672.4                   632.0                443.9                   294.5                     308.5 
Train threshold                            0.28                   0.49                     0.28                  0.22                     0.14                       0.23 
AUC train                                     0.69                   0.85                     0.82                  0.91                     0.92                       0.96 
AUC test                                       0.59                   0.82                     0.75                  0.88                     0.82                       0.91 
TSS train                                       0.27                   0.54                     0.48                  0.69                     0.68                       0.78 
TSS test                                         0.06                   0.45                     0.33                  0.60                     0.43                       0.59 
D train                                           0.11                   0.39                     0.31                  0.49                     0.29                       0.58 
D test                                             0.05                   0.35                     0.21                  0.43                     0.19                       0.43 

GAM without RockCobble 
AUC train                                     0.68                   0.78                     0.75                  0.85                     0.91                       0.92 
AUC test                                       0.54                   0.70                     0.67                  0.72                     0.76                       0.85

Table 3. Random forest modeling and generalized additive modeling (GAM); summary of diagnostics. For random forest mod-
eling, the classification error rate is the proportion of a taxon that is incorrectly classified from the confusion matrix. For the 
GAMs, the Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical mod-
els for a given set of data (Wood 2006); an area under the receiver operating characteristic curve (AUC) value >0.5 is estimated 
to be better than chance, AUC > 0.7 is estimated to be acceptable, and AUC > 0.8 and 0.9 are excellent and outstanding, 
respectively (Hosmer & Lemeshow 2005). True skill statistic (TSS) ranges from −1 to +1, where +1 indicates perfect agreement 
and values of zero or less indicate a performance no better than random (Allouche et al. 2006). A value Tjur’s coefficient of dis-
crimination (D) of 0.2 would mean that presences were predicted to have on average a 0.2 higher probability than absences 
(Tjur 2009). All rows except the last 2 show diagnostics for models fit with 9 environmental variables; the last 2 rows show  

diagnostics fit excluding one environmental variable, the proportion of rock and cobble
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 variables, depending on the indicator taxa (Fig. S1 in 
the Supplement at www.int-res.com/articles/suppl/
m712p067_supp.pdf). Balticina sp. were more likely 
in low current, Demospongiae in intermediate depth, 
warmer temperature, and higher tidal current, Hexac -
tinellida in greater depth, steeper slope, and an inter-
mediate proportion of rock and cobble, P. gurneyi in 
warmer temperature, Primnoidae in higher tidal cur-
rent and higher proportion of rock and cobble (>0.5), 
and Stylasteridae in intermediate ocean color and 
higher proportion of rock and cobble. Excluding the 
proportion of rock and cobble from the analysis had 
little effect on model performance. AUC values for 
the GAMs were lower, but not by much, for the 
reduced model (excluding the proportion of rock and 
cobble) compared to the full model (with all 9 envi-
ronmental variables) (Table 3). 

In the GAMs, Balticina sp., which prefers uncon-
solidated sediment, were widespread and found 
along the shelf break of the Aleutian Islands region, 
eastern Bering Sea, and Gulf of Alaska (Fig. S2). 
P. gurneyi, which also prefers unconsolidated sedi-
ment, instead were concentrated in the Aleutian 
Islands region. Demospongiae were concentrated in 
the Aleutian Islands region, western Gulf of Alaska, 
and along the shelf break of the Gulf of Alaska. The 

spatial distribution of Hexactinellida was similar but 
was found at deeper depths than Demospongiae. 
Primnoidae, which prefers rock and cobble, primarily 
occurred in the central and eastern Aleutian Islands 
region and in the western Gulf of Alaska shelf. Sty-
lasteridae, which also prefers rock and cobble, also 
was common in the Aleutian Islands region including 
the western part as well as the shelf break of the 
 central Gulf of Alaska. 

4.  DISCUSSION 

4.1.  Ecological interpretation 

The assemblages were well defined and influ-
enced by a specific mix of environmental variables. 
Cluster membership was dominated by a single indi-
cator taxon (Fig. 2), which was true for all 6 clusters. 
Indicator taxa could spill over into other clusters 
(e.g. Primnoidae sometimes occurred in the Demo-
spongiae and Stylasteridae clusters), yet their re -
lative abundance usually was low. In the CCA re -
lating taxa to the environmental variables, the 6 
indicator taxa were distinct from one another and 
each aligned along different environmental variables 
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region, and the Gulf of Alaska. Sponge: Demospongiae, Hexactinellida; coral: Primnoidae; Stylasteridae; sea whip: Balticina 
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Raster layers were available for all environmental variables except proportion of rock and cobble
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except for Demospongiae and Primnoidae, which 
both aligned along the same environmental variables 
(Fig. 3). In the GAMs used for spatial predictions, 
most indicator taxa were reliably predicted from the 
environmental variables. The measures of model 
predictive performance imply that 5 of the 6 esti-
mated GAM relationships for indicator taxa were 
well estimated, except Balticina sp., which was less 
defined but still informative (e.g. training AUC, 
acceptable; test AUC, better than average). The 
GAMs did a good job of predicting the occurrence of 
most of the indicator taxa, supporting our conclusion 
that a specific mix of environmental variables influ-
enced each assemblage. 

Deep-sea corals and sponges occupied habitats 
with a high proportion of rock and cobble, with corals 
occurring in the rockiest areas and sponges occur-
ring in low to intermediate areas. The exception was 
sea whips and sea pens, which are known to occupy 
mostly unconsolidated substrates (Wilborn et al. 
2018). Substrate type (especially the presence of 
hard substrates for attachment of corals and sponges) 
has been found to be the most important variable 
determining the presence of these taxa across many 
ecosystems, including those found in Alaska (Gotelli 
1988, Leys & Lauzon 1998, Edinger et al. 2011, 
Rooper et al. 2016). Depth and current also were 
important influences in structuring deep-sea coral 
and sponge assemblages. Primnoidae, Plexauridae, 
and Acanthogorgiidae co-occurred in shallow, rocky, 
high-current areas (Fig. 3). Stylasteridae occurred in 
deeper, rocky areas, and Hexactinellida occurred in 
deeper, less rocky areas. Both Ptilosarcus gurneyi 
and Balticina sp. occurred in soft-bottom areas, with 
P. gurneyi in shallow habitats and Balticina sp. in 
deeper habitats. Demospongiae were common in 
several clusters and were found in a wide range of 
habitats, for example with the proportion of rock and 
cobble ranging from 0−1. The taxonomic resolution 
of Demospongiae is class, with over 90 identified 
species and habitat preferences for the Aleutian 
Islands region (Stone et al. 2011), which likely 
explains the wide range of habitats occupied. 

Clear differences in spatial distributions occurred 
among the deep-sea corals and sponges. For Baltic-
ina sp. and P. gurneyi (GAM; Fig. S2), which prefer 
unconsolidated sediment, the former was wide-
spread and occurred in the Aleutian Island region, 
Bering Sea, and Gulf of Alaska, while the latter was 
mostly limited to the Aleutian Islands region. Demo-
spongiae and Hexactinellida were concentrated in 
the Aleutian Islands region, western Gulf of Alaska, 
and along the shelf break of the Gulf of Alaska, with 

Hexactinellida found at deeper depths than Demo-
spongiae. Primnoidae and Stylasteridae, which pre-
fer rock and cobble, primarily occurred in the central 
and eastern Aleutian Islands region, with the latter 
also common in the western Aleutian Islands region 
as well as the shelf break of the central Gulf of 
Alaska. The spatial patterns from the random forest 
modeling were generally similar to the GAMs but 
there also were a few differences. In this comparison, 
we focus on the 3 most common assemblages: Baltic-
ina sp., Demospongiae, and Primnoidae (Fig. 5). Spa-
tial distributions for both modeling approaches were 
similar for Balticina sp. and Demospongiae, with 
Balticina sp. spread over more of the outer shelf of 
the Bering Sea for random forest modeling. Both 
modeling approaches predicted Primnoidae prima-
rily in the Aleutian Islands region, with Primnoidae 
predicted for the western Gulf of Alaska in random 
forest modeling but not in GAM. 

4.2.  Caveats 

Most of the environmental variables (slope, bottom 
temperature, maximum tidal speed, bottom current, 
ocean color, aspect, TPI) were based on spatial esti-
mates (raster layers) of their average values rather 
than single measurements coincident with the stereo 
camera deployments (depth, proportion of rock and 
cobble). However, deep-sea corals and sponges are 
long-lived, sessile organisms so average values bet-
ter represent the environmental conditions they 
experience rather than one measurement at a single 
point in time. For example, the bottom temperature 
variable was based on measurements over 3 decades 
of summer bottom temperatures from Alaska bottom 
trawl surveys. In addition, the resolution of the spa-
tial estimates was usually coarser than the scale of 
the observations (transects averaged a few hundred 
meters), and the spatial estimates were interpolated 
to a 100 × 100 m grid. For example, the resolution of 
the ocean color is ⅙° latitude and longitude (approx-
imately 19 × 9 km) and was interpolated to the 100 × 
100 m grid. For ocean surface long-term averages, 
spatial interpolation of coarse-scale values seems 
unlikely to add major errors. In contrast, the water 
movement variables interact with the seafloor and 
were estimated at coarser resolutions than the 100 × 
100 m grid (maximum tidal speed: 1 × 1 km; current 
speed: 10 × 10 km grid), so fine-scale variation in 
seafloor topography will introduce some error into 
values for these 2 water movement variables. For 
example, the maximum tidal speed at a solitary rock 
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outcrop will likely be underestimated and, if fre-
quently occurring, make the detection of a statisti-
cally significant effect less likely. 

The proportion of rock and cobble was an impor-
tant environmental variable for differentiating clus-
ters, separating sea whips/pens (Balticina sp. and P. 
gurneyi) that prefer unconsolidated sediment, coral 
taxa (Stylasteridae and Primnoidae) that prefer high 
proportions of rock and cobble, and sponge taxa 
(Demospongiae and Hexactinellida) that prefer inter-
mediate proportions of rock and cobble. Unfortu-
nately, complete substrate maps do not exist for 
Alaskan waters, so the proportion of rock and cobble 
was excluded from predictions of the spatial distribu-
tions of deep-sea corals and sponges. However, 
whether or not the proportion of rock and cobble was 
included in the analysis had little effect on model 
performance. For example, a measure of predictive 
ability for the random forest modeling (the OOB clas-
sification error) was similar for the full model (44%) 
and the reduced model (45%) excluding the propor-
tion of rock and cobble. Likewise, AUC values for the 
GAMs were lower, but not by much, for the reduced 
model (excluding the proportion of rock and cobble) 
compared to the full model (with all 9 environmental 
variables) (Table 3). At first glance, this is an unex-
pected result. However, other environmental vari-
ables such as maximum tidal current and bottom cur-
rent are related to the proportion of rock and cobble 
(Fig. 3). In the reduced model, these other variables 
were apparently effective proxies for the proportion 
of rock and cobble and informed predictions of the 
assemblages and their indicator taxa. 

Three coral families in our analysis were compila-
tions of higher resolution taxonomic data. Higher 
resolution identifications from the post-cruise image 
analysis (e.g. Arthrogorgia sp. from the Primnoidae 
coral family) sometimes (~⅓ of the time) were avail-
able for Primnoidae, Plexauridae, and Acanthogorgi-
idae, but the grouping usually (~⅔ of the time) 
matched the highest resolution identification. For 
example, for the Primnoidae group, the original iden-
tifications were Primnoidae 64%, Arthrogorgia sp. 
3%, Fanellia sp. 5%, Plumarella aleutiana 0.1%, 
Plumarella sp. 27%, Primnoa pacifica 0.01%, and 
Thouarella sp. 1% (Table 2). For the remaining 9 of 
12 taxa (e.g. Demospongiae), these were the highest 
resolution identifications made in the post-cruise 
image analysis (i.e. Demospongiae was the highest 
resolution taxonomic data available from the post-
cruise image analysis). Overall, most (90%) of the 
taxonomic groupings in our analysis were the high-
est resolution taxonomic data available. 

One important analysis choice that we made for the 
deep-sea coral and sponge data was to group (clus-
ter) the data rather than look for gradients. Looking 
for gradients is done to visualize gradational patterns 
among species (e.g. Pérez & Ballesteros 2004, 
Menezes et al. 2006, Tamir et al. 2019) as well as 
temporal (e.g. Warwick & Clarke 1990) and spatial 
gradations (e.g. Sigler et al. 2017) and often is com-
bined with cluster analysis (e.g. Pérez & Ballesteros 
2004, Menezes et al. 2006, Tamir et al. 2019). Cluster 
analysis is done to identify groups of stations show-
ing faunal similarities (e.g. Pérez & Ballesteros 2004, 
Menezes et al. 2006) and to determine the optimal 
number of communities for subsequent analysis (e.g. 
Tamir et al. 2019). One reason for choosing cluster 
rather than gradient analyses was to meet our objec-
tive of identifying major Alaskan coral and sponge 
assemblages. We wondered whether there were dis-
tinct communities that could be distinguished from 
one another, still subject to local environmental char-
acteristics yet distinguishable from one another, sim-
ilar to the way that elevation and exposure create 
distinct (terrestrial) mountain plant communities. 
Another reason for choosing cluster analysis rather 
than spatial gradient analysis is that a frequent fea-
ture of coral and sponge habitat, the proportion of 
rock and cobble, is often patchy and discontinuous; 
these spatial discontinuities limit analysis of spatial 
gradients and thus a clustering approach seems more 
appropriate. 

In the cluster analysis, we employed 2 commonly 
used measures to determine the number of clusters: 
silhouette width (e.g. Lechner et al. 2016) and the 
IndVal index (e.g. Menezes et al. 2006, Tamir et al. 
2019). The measures used to determine the number 
of clusters do not always recommend the same num-
ber (Borcard et al. 2018). In our analysis, silhouette 
width recommended 6 clusters whereas the IndVal 
index recommended only 2 clusters. We chose 6 
rather than 2 clusters because for 6 clusters, each 
cluster had one obvious indicator taxa, whereas for 2 
clusters, multiple indicator taxa were mixed in each 
cluster. 

4.3.  Indicator taxa and their use  
in identifying VMEs 

VMEs have been defined as systems that are sus-
ceptible to damage by bottom-contacting fishing 
gear (General Assembly Resolution 64/72; United 
Nations 2010). Typically, VMEs are identified by the 
presence of VME indicator species, which are spe-
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cies defined as (1) unique or rare, (2) functionally sig-
nificant as habitat, (3) fragile, (4) long-lived or with 
episodic or infrequent recruitment, and (5) struc-
turally complex (FAO 2009). This definition is some-
what different from the definition of indicator species 
typically used in community ecology, where an indi-
cator species is indicative of a certain type of commu-
nity assemblage (e.g. Dufrêne & Legendre 1997). 
Here, we utilized the FAO definition of VME indica-
tor species to identify the taxa of concern (deep-sea 
coral and sponge taxa that are vulnerable to damage 
by bottom-contact gear) and then used community 
analyses to identify representative members of VME 
communities and their spatial distributions for con-
servation measures. This approach allows identifica-
tion of VME communities (Watling & Auster 2021) 
where multiple taxa of VME indicator species are 
likely to co-occur. 

In practice, the VME indicator species approach 
(FAO 2009) has resulted in broad definitions of indi-
cator taxa for most management bodies (e.g. NPFC 
2019, ICES 2020, SPRFMO 2020). For example, in the 
North Pacific Fisheries Commission, VME indicator 
taxa are defined as ‘Alcyonacea, Antipatharia, Gorg-
onacea, and Scleractinia’ (NPFC 2019). Within each 
of these groups, there is large variation in life history 
traits and subsequent vulnerability to mobile bottom 
fishing gear. For example, the order Alcyonacea con-
tains species such as Gersemia rubiformis, which is a 
low and rapidly growing species and likely less vul-
nerable than Primnoa pacifica, a large and slow-
growing species in the same order. In general, simi-
lar approaches to managing benthic impacts on 
corals and sponges based on large taxonomic group-
ings are the rule within national waters as well (e.g. 
Wallace et al. 2015, MacLean et al. 2017). Imple-
menting spatial closures based on these larger taxo-
nomic groupings can lead to imprecise management 
of VMEs. Using community analysis to identify rep-
resentative members of the VME communities adds 
management precision and lets managers target pro-
tections on communities of vulnerable species indi-
cated by the presence of a single taxonomic group 
(e.g. Primnoidae). 

Several methods have been applied to develop tar-
geted protection of VMEs. Their goal is to simplify 
taxonomic diversity into VME indicators that identify 
areas where habitat protections can be most effec-
tively placed. Here, we defined VME indicators 
based on community analysis and then predicted 
their spatial distributions using species distribution 
modeling. In an alternative method with a similar 
goal, observations of individual taxa themselves or 

their modeled distributions are assembled into spa-
tial distributions of VMEs by stacking individual spe-
cies distribution models or observations (Morato et 
al. 2018, Burgos et al. 2020). This method is espe-
cially useful for data from varying sources with 
uncertainties regarding the sample representative-
ness or biases in the spatial patterns of observations 
(Burgos et al. 2020). Species archetype modeling also 
has been used to generate maps of indicator species 
where species observations are used to generate 
clusters of taxa with similar environmental responses 
and then using mixture models, utilize taxa with 
stronger data to assist in determining the spatial dis-
tribution of taxa with weaker data with the same 
environmental responses (Murillo et al. 2018). 

The approach presented here (community analysis 
with species distribution modeling of the community 
indicators) is a data-driven method for identifying 
both VME indicators and their distributions. This 
data-driven method is an improvement over ap -
proaches that qualitatively define indicators as broad 
groups of taxa. This method also is less complex and 
easier to implement than methods that utilize species 
distribution models across multiple individual taxa 
with varying levels of data support. These other 
approaches also often suffer from lumping taxa into 
groups with a range of life histories and susceptibility 
to damage by mobile fishing gear. Using quantitative 
analyses like ours to define VME indicator species 
allows identification and protection that better tar-
gets VME communities. 

Our approach led us to identify 6 distinct assem-
blages, each characterized by a single relatively 
abundant indicator taxon. These VME indicators can 
guide the identification of protected areas. Examin-
ing the co-occurrence of deep-sea coral and sponge 
taxa provides a sense of potential effectiveness. For 
example, protecting the habitat where Primnoidae 
occur will protect a wide range of taxa (Table 4). Sev-
eral coral taxa co-occur with Primnoidae at high rates 
(>75% of each taxon’s observations) including Acan-
thogorgiidae, Isididae, Para gorgiidae, Plexauridae, 
and Stylasteridae as well as one sponge taxon, Cal-
carea. Other sponge taxa co-occur at intermediate 
rates (44 and 53% for Demospongiae and Hexa-
ctinellida, respectively). Only the soft-sediment-pre-
ferring Balticina sp. co-occurs at a low rate (14%). 
Protecting the habitat where Stylasteridae occur also 
protects a wide range of taxa, similar to the result for 
Primnoidae. Protecting the habitat where Demo-
spongiae occur also protects a wide range of taxa, at 
higher rates than Primnoidae and Stylasteridae. 
However, Demospongiae were observed twice as 
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often as Primnoidae (461 vs. 213 of the 853 observa-
tions), so reaching this level of protection implies 
much larger closure areas. In developing ocean man-
agement regulations, which is outside the scope of 
this paper, a cost−benefit analysis would evaluate 
choices such as these. Such an analysis also would 
likely examine other metrics besides co-occurrence 
for evaluating conservation benefits, such as deep-
sea coral and sponge density, height, and diversity. 

4.4.  Conclusions 

Deep-sea corals and sponges in Alaska form well-
defined assemblages based on their co-occurrence 
and environmental preferences. We used these char-
acteristics to define indicator taxa for the assem-
blages and predict their spatial distributions using 
species distribution models. In combination, these 2 
results provide a useful tool for identifying areas of 
deep-sea coral and sponge habitat in Alaska that 
would likely benefit from protection from bottom-
contacting fishing gear. Monitoring these indicator 
taxa on a large scale will enable us to track the future 
health of VMEs in Alaska. 
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